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NYC Algorithmic Transparency Law
Int. No. 1696-A: A Local Law in relation to automated 

decision systems used by agencies
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NYC Algorithmic Transparency Law
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10/16/2017



The original draft 
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8/16/2017

this is NOT what was adopted



Summary of Int. No. 1696-A

Form an automated decision systems (ADS) task force that surveys 
current use of algorithms and data in City agencies and develops 
procedures for:   

• requesting and receiving an explanation of an algorithmic decision 
affecting an individual (3(b))  

• interrogating ADS for bias and discrimination against members of 
legally-protected groups (3(c) and 3(d)) 

• allowing the public to assess how ADS function and are used (3(e)), 
and archiving ADS together with the data they use (3(f))
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we’ve come a long way from the original draft!

1/11/2018



The ADS Task Force
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ADS example: urban homelessness
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Emergency 
shelter 

Transitional 
housing 

Rapid  
re-housing 

Permanent 
housing 

Housing with 
services Unsuccessful 

exit 

• Allocate interventions: services and support mechanisms 

• Recommend pathways through the system 

• Evaluate effectiveness of interventions, pathways, over-all system 

image by Bill Howe
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https://www.nytimes.com/2017/01/13/
nyregion/mayor-de-blasio-scrambles-to-
curb-homelessness-after-years-of-not-

keeping-pace.html
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https://www.nytimes.com/
2016/02/06/nyregion/young-
and-homeless-in-new-york-

overlooked-and-
underserved.html



Responsible data science
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data protectionfairness diversity transparency

• Be transparent and accountable  

• Achieve equitable resource distribution 

• Be cognizant of the rights and preferences of individuals

done?

FAT/ML

but where does the data come from?by Moritz Hardt



Responsible data science
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• Be transparent and accountable  

• Achieve equitable resource distribution 

• Be cognizant of the rights and preferences of individuals

done?

FAT/ML

but where does the data come from?



Responsible data science
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data protectionfairness diversity transparency

• Be transparent and accountable  

• Achieve equitable resource distribution 

• Be cognizant of the rights and preferences of individuals



The data science lifecycle
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sharing 
annotation acquisition 

curation

querying 
ranking

analysis 
validation

responsible data science requires a holistic view 
of the data lifecycle



Revisiting the analytics step
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finding: women are underrepresented in 
some outcome groups (group fairness)

select * from R  
where status = ‘unsheltered’ 10% female
and length > 2 month

fix the model!

of course, but maybe… the input was generated with:



Revisiting the analytics step
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finding: women are underrepresented in 
some outcome groups (group fairness)

select * from R  
where status = ‘unsheltered’ 40% female
and length > 1 month

fix the model!

of course, but maybe… the input was generated with:



Revisiting the analytics step
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finding: young people are recommended 
pathways of lower effectiveness (high error rate)

fix the model!

of course, but maybe…

mental health info was missing for this population

go back to the data acquisition step, look for additional datasets



Revisiting the analytics step
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finding: minors are underrepresented in the input, compared to 
their actual proportion in the population (insufficient data) 

fix the model??unlikely to help!

minors data was not shared
go back to the data sharing step, help data providers share their data 

while adhering to laws and upholding the trust of the participants



Fides: responsibility by design
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[BIGDATA] Foundations of responsible data management 09/2017-



Fides: responsibility by design
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Systems support for 
responsible data science 

Responsibility by design, 
managed at all stages of the 
lifecycle of data-intensive 
applications 

Applications: data science 
for social good

Fi
de
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Processing&

Integra0on&

Verifica0on&and&compliance& Provenance&
Explana0ons&

Querying&
Ranking&
Analy0cs&

Sharing&and&Cura0on&

Triage&
Alignment&
Transforma0on&

Annota0on&
Anonymiza0on&

responsible data science requires a holistic 
view of the data lifecycle



Collaborative access control
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joint with Moffitt [Drexel], Abiteboul [INRIA], Miklau [UMass] - [SIGMOD 2015]

• Data owner specifies access control 
annotations on the base relations  

• The system automatically propagates 
these annotations from base relations to 
views  

• Based on fine-grained provenance 
techniques - because we know the data 
and the process! 

• The environment: distributed datalog with 
delegation 

• Implemented in a system, demonstrates 
that the overhead of access control is 
modest!

sue 

friends of alice friends of bob 

… … 
bob alice 



Collaborative access control
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[at sue] album@sue($ph, pete) :- photo@pete($ph), 
    tag@pete($ph, alice), tag@pete($ph, bob)

photo@pete(fname)-
wildparty*

awww*

photo@pete tag@pete 

album@sue 

tag@pete(pic,-name)-
wildparty* alice*

wildparty* bob*

wildparty* pete*

wildparty* sue*

awww* pete*

album+@sue(pic,-source,pset,priv)-
wildparty* pete* {alice,*bob,*pete,*sue}* READ*

acl@pete(rel,-pset,-priv)-
photo* {alice,*bob,*pete,*sue}* READ*

tag* !  READ*

acl@sue(rel,-pset,-priv)-
album* {sue}* WRITE*

joint with Moffitt [Drexel], Abiteboul [INRIA], Miklau [UMass] - [SIGMOD 2015]
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ABSTRACT

The management of Web users’ personal information is in-
creasingly distributed across a broad array of applications
and systems, including online social networks and cloud-
based services. Users wish to share data using these systems,
but avoiding the risks of unintended disclosures or unautho-
rized access by applications has become a major challenge.

We propose a novel access control model that operates
within a distributed data management framework based on
datalog. Using this model, users can control access to data
they own and control applications they run. They can con-
veniently specify access control policies providing flexible
tuple-level control derived using provenance information. We
present a formal specification of the model, an implementa-
tion built using an open-source distributed datalog engine,
and an extensive experimental evaluation showing that the
computational cost of access control is modest.

1. INTRODUCTION

The personal data and favorite applications of a Web user
are typically distributed across many heterogeneous devices
and systems, e.g., residing on a smartphone, laptop, tablet,
TV box, or managed by Facebook, Google, etc. Additional
data and even computational resources may also be available
to the user from relatives, friends, colleagues, and possibly
via social network systems. Web users are thus increasingly
at risk of leaking their private data and in general of losing
control over their own information. In this paper, we in-
troduce a novel collaborative access control mechanism that
provides users with the means to control access to their data
by others and the functioning of applications they run. By
collaborative, we mean that di�erent users are willing to
participate in the appropriate support of access control.

The focus here is therefore on information management in
environments in which data and programs are distributed,
either physically between collaborating peers, or conceptu-
ally between collaborating principals, i.e., entities that can
be authenticated by a computer system or network. (In the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright c• 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2749433.

following, we will generically use the term “peer”.) More
precisely, we consider the issue of access control for such an
environment. While the technology for distributed informa-
tion management has been widely studied, access control
has rarely been included. In such settings, there are three
essential aspects to access control:

R1: Data access As for centralized database systems, users
would like to control who can read and modify their
information.

R2: Application control Users would like to control which
applications can run on their behalf, and what infor-
mation these applications can access.

R3: Data dissemination Users would like to control how
pieces of information are transferred from one partici-
pant to another, and how they are combined, with the
owner of each piece keeping some control over it.

Finally, motivated by usability and e�ciency considerations,
we add a fourth, somewhat orthogonal, requirement:

R4: Declarativeness The specification of the exchange of
data, applications, as well as that of the access control
policies, should be declarative.

To illustrate the first three requirements, let us consider
Facebook, a conceptually centralized environment in which
millions of users interact by exchanging data and applica-
tions. To control who can see her information, a user uses a
classic access control mechanism, such as the one currently
employed by Facebook, based on groups of friends (R1).
Next, consider a user installing an application. This typi-
cally involves opening much of her data to a server that is
possibly managed by an unknown third party. Many Face-
book users see this as unreasonable, and would like to con-
trol what the application can do “in their name” and what
information the application can access (R2). Finally, with
respect to data dissemination (R3), users would like to spec-
ify what other users can do with their data, e.g., whether
their friends are allowed to show their pictures to their re-
spective friends.

We adopt the last requirement (R4) because a declarative
specification (i) makes it easier for a user to specify access
control policies, (ii) enables reasoning about these policies,
and (iii) allows for powerful performance optimizations. The
usability consideration is perhaps the most important one,
since typical Web users have neither the desire nor the ex-
pertise to write code to define how data and applications are
exchanged and how access is controlled.

We propose a mechanism that addresses each of these is-
sues by introducing access control in a datalog dialect [4].

A taste of experimental results: time
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(a) public access control policy
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(b) known access control policy

Figure 3: Total time, averaged across agg peers in MAF-JoU (10/2/1), as a function of database size.

control policy. Under the public policy, all peers have read

access to all extensional relations of other peers. This policy
computes the same result in album@sue($photo, $peer) (for
PA) and t@master(x) (for MAF) as when the WebdamLog
program is executed without access control. Comparing per-
formance under the public policy to performance without
access control gives an understanding of the overhead intro-
duced by the relations required to maintain access control
information and by access control rule rewriting.

Under the known policy, peers have read access to the
extensional relations of the peers to which they are con-
nected by a direct edge. This policy represents a common
case in social networks such as Facebook, where one’s friends
have access to their data but peers outside the friendship
network do not. This policy allows us to evaluate the over-
head of computing non-trivial p-sets, and of propagating
them through access control rule rewriting. A program
under the public policy is more e�cient than under the
known policy, provided that it computes the same result
under both policies. This is because public access to a fact
is represented compactly by the symbol �, rather than by a
variable-length p-set required for the known policy.

A subtlety in evaluating the known policy arises in the
MAF-UoJ scenario, due to delegation in WebdamLog being
processed left-to-right. Consider the following rule.

[at master] s@agg($x) :- r@fol1($x), r@fol2($x), r@fol3($x)

This rule is evaluated by installing the following chain of
delegations on participating peers.

[at fol1] temp@fol2($x) :- r@fol1($x)
[at fol2] temp@fol3($x) :- temp@fol2($x), r@fol2($x)
[at fol3] s@agg($x) :- temp@fol3($x), r@fol3($x)

For a non-empty result to be computed in s@agg, fol2
must have read access to r@fol1, and fol3 must have read

access to r@fol1 and r@fol2. To simplify policy generation,
we assume all fol peers that send data to the same aggregator
have read access to each others r relations. An analogous
situation arises in MAF-JoU, when a join of relations at
each aggregator is processed left-to-right. To ensure that a
non-empty result is computed in t@master, we grant read

access to each agg peer on all r relations of fol peers.
Remark. We did not run any experiments with policies

that include hide and preserve. These constructs make
the policy language more flexible, but do not add new im-
plementation challenges: evaluating under hide is identical
to extension evaluation; evaluating under preserve is iden-
tical to intentional evaluation.

Experimental environment. All experiments are conducted
on a cluster of 8 Linux nodes running CentOS 2.6.32 (64-
bit). Six cluster nodes have Quad-core Intel(R) Xeon(R)
CPU X5460 @ 3.16GHz with 8G of RAM. Two other cluster
nodes have 16 Intel(R) Xeon(R) CPU E5-2643 0 @ 3.30GHz
with 15.65G of RAM.

For the PA scenario, peers sue, alice and bob share a single
node, while other peers are spread out evenly across the
remaining nodes. For the MAF scenarios, master runs on
a dedicated node and the remaining peers are spread out
evenly, with agg and fol peers running on separate nodes.

All experiments are executed 5 times with a cold start.
We report averages of 5 executions.

Performance optimizations. We start by presenting a com-
parison of di�erent access control conditions with and with-
out performance optimizations, using a representative exam-
ple. Figures 3(a) and 3(b) show the average running time
of agg peers for the JoU (10/2/1) scenario as a function of
database size (namely, size of r@fol at each fol). In this
scenario, an agg peer takes a union of extensional relations
from 5 fol peers.

Observe from Figure 3(a) that Optim 1 (writeable) sig-
nificantly outperforms the unoptimized implementation of
public access control, while Optim 2 (formulas) performs
slightly worse than the unoptimized version. Finally, the
combination of Optim 1 and Optim 2 performs compara-
bly to Optim 1 alone and to no access control. (We denote
this combination by Optim (1 & 2).) These results are as
expected. Formulas do not speed up the running time for
public because we store p-sets for this policy using the spe-
cial symbol �, which is already as compact a representation
of a p-set as can be. In fact, adding formulas introduces an-
other level of indirection: a relation is added to the rewriting
and rewriting rules become more complex, without the ben-
efit of making p-sets more compact.

Next, observe from Figure 3(b) that Optim 1 (writeable)
significantly outperforms the unoptimized implementation
of the known policy, and that Optim 2 (formulas) alone
slightly outperforms the unoptimized implementation. The
best results are achieved with Optim (1 & 2) because p-sets
are non-trivial for the known policy, and formulas make
working with p-sets more e�cient during fixpoint computa-
tion and during data exchange between peers.

We observed similar trends in all scenarios in our experi-
ments, for all types of peers. In some cases, Optim (1 & 2)
performs slightly worse than Optim 1 alone for the public

policy, but in most cases performance of these two options is

joint with Moffitt [Drexel], Abiteboul [INRIA], Miklau [UMass] - [SIGMOD 2015]
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ABSTRACT

The management of Web users’ personal information is in-
creasingly distributed across a broad array of applications
and systems, including online social networks and cloud-
based services. Users wish to share data using these systems,
but avoiding the risks of unintended disclosures or unautho-
rized access by applications has become a major challenge.

We propose a novel access control model that operates
within a distributed data management framework based on
datalog. Using this model, users can control access to data
they own and control applications they run. They can con-
veniently specify access control policies providing flexible
tuple-level control derived using provenance information. We
present a formal specification of the model, an implementa-
tion built using an open-source distributed datalog engine,
and an extensive experimental evaluation showing that the
computational cost of access control is modest.

1. INTRODUCTION

The personal data and favorite applications of a Web user
are typically distributed across many heterogeneous devices
and systems, e.g., residing on a smartphone, laptop, tablet,
TV box, or managed by Facebook, Google, etc. Additional
data and even computational resources may also be available
to the user from relatives, friends, colleagues, and possibly
via social network systems. Web users are thus increasingly
at risk of leaking their private data and in general of losing
control over their own information. In this paper, we in-
troduce a novel collaborative access control mechanism that
provides users with the means to control access to their data
by others and the functioning of applications they run. By
collaborative, we mean that di�erent users are willing to
participate in the appropriate support of access control.

The focus here is therefore on information management in
environments in which data and programs are distributed,
either physically between collaborating peers, or conceptu-
ally between collaborating principals, i.e., entities that can
be authenticated by a computer system or network. (In the
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following, we will generically use the term “peer”.) More
precisely, we consider the issue of access control for such an
environment. While the technology for distributed informa-
tion management has been widely studied, access control
has rarely been included. In such settings, there are three
essential aspects to access control:

R1: Data access As for centralized database systems, users
would like to control who can read and modify their
information.

R2: Application control Users would like to control which
applications can run on their behalf, and what infor-
mation these applications can access.

R3: Data dissemination Users would like to control how
pieces of information are transferred from one partici-
pant to another, and how they are combined, with the
owner of each piece keeping some control over it.

Finally, motivated by usability and e�ciency considerations,
we add a fourth, somewhat orthogonal, requirement:

R4: Declarativeness The specification of the exchange of
data, applications, as well as that of the access control
policies, should be declarative.

To illustrate the first three requirements, let us consider
Facebook, a conceptually centralized environment in which
millions of users interact by exchanging data and applica-
tions. To control who can see her information, a user uses a
classic access control mechanism, such as the one currently
employed by Facebook, based on groups of friends (R1).
Next, consider a user installing an application. This typi-
cally involves opening much of her data to a server that is
possibly managed by an unknown third party. Many Face-
book users see this as unreasonable, and would like to con-
trol what the application can do “in their name” and what
information the application can access (R2). Finally, with
respect to data dissemination (R3), users would like to spec-
ify what other users can do with their data, e.g., whether
their friends are allowed to show their pictures to their re-
spective friends.

We adopt the last requirement (R4) because a declarative
specification (i) makes it easier for a user to specify access
control policies, (ii) enables reasoning about these policies,
and (iii) allows for powerful performance optimizations. The
usability consideration is perhaps the most important one,
since typical Web users have neither the desire nor the ex-
pertise to write code to define how data and applications are
exchanged and how access is controlled.

We propose a mechanism that addresses each of these is-
sues by introducing access control in a datalog dialect [4].

A taste of experimental results: space
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joint with Moffitt [Drexel], Abiteboul [INRIA], Miklau [UMass] - [SIGMOD 2015]



DataSynthesizer: usable differential privacy
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joint with Ping [Drexel] and Howe [UW] - [SSDBM 2017, D4GX 2017]

http://demo.dataresponsibly.com/synthesizer/



DataSynthesizer
• Easy to use: a CSV file as input, no schema description 

• Generates and releases synthetic datasets that are 

- privacy-preserving - differentially private 

- statistically similar to real data 

• There modes of operation 

- random type-consistent values 

- independent attributes - based on noisy histograms  

- correlated attributes - privately learn a Bayesian Network 

• Interesting translational research challenges: usability / important 
standard assumptions of DP work don’t hold in practice

�25

joint with Ping [Drexel] and Howe [UW] - [SSDBM 2017, D4GX 2017]



But does it work?
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http://demo.dataresponsibly.com/synthesizer/

joint with Ping [Drexel] and Howe [UW] - [SSDBM 2017, D4GX 2017]



http://www.govtech.com/security/University-Researchers-Use-Fake-Data-for-Social-Good.html

MetroLab “Innovation of the Month”



Fides: a responsible data science platform 
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Systems support for 
responsible data science 

Responsibility by design, 
managed at all stages of the 
lifecycle of data-intensive 
applications 

Applications: data science 
for social good

Fi
de

s&

Processing&

Integra0on&

Verifica0on&and&compliance& Provenance&
Explana0ons&

Querying&
Ranking&
Analy0cs&

Sharing&and&Cura0on&

Triage&
Alignment&
Transforma0on&

Annota0on&
Anonymiza0on&

[BIGDATA] Foundations of responsible data management, 09/2017-



 Job applicant selection
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select 4 
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Can state all these as constraints:
for each category i, pick Ki elements, with   floori ≤ Ki ≤ ceili



Hiring a job candidate
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4 1 3 2 5 7

Candidates arrive one-by-one 

A candidate’s score is revealed when the candidate arrives 

Decision to accept or reject a candidate made on the spot

Goal: Hire a candidate with a high score



The Secretary Problem
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Consider, and reject, the first S candidates 

Record T, the best seen score among the first S candidates  

Accept the next candidate with score better than T

Goal: Design an algorithm for picking one element of a 
randomly ordered sequence, to maximize the probability of 
picking the maximum element of the entire sequence.

4 1 3 2 5 7 Competitive ratio
1
e

the best possible!

N = 6

S = N
e

⎢
⎣

⎥
⎦ = 2

T = 4



K-choice Secretary
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Consider, and reject, the first S candidates 

Record K best scores among the first S candidates, call this T  

Whenever a candidate arrives whose score is higher than the 
minimum in T, accept the candidate and delete the minimum from T

Goal: Design an algorithm for picking K elements of a 
randomly ordered sequence, to maximize their expected sum.

4 1 3 2 5 7 Competitive ratio
1
e

far from optimal

N = 6 K = 2

S = N
e

⎢
⎣

⎥
⎦ = 2

T ={1, 4}

[Babaioff et al., 2007]



Diverse K-choice Secretary
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Goal: Design an algorithm for picking K elements of a 
randomly ordered sequence, to maximize their expected sum. 

For each category i, pick Ki elements, with   floori ≤ Ki ≤ ceili

6 1 3 2 9 74 8 2 1 5 5

joint with Yang [Drexel] and Jagadish [UMich] - [EDBT 2018]

Nred = Nblue = 6
K = 3
1≤ Kred ,Kblue ≤ 2

Accept floor items for each category from per-category 
streams 

Accept the remaining slack items irrespective of 
category membership, but subject to ceil

slack = K − ( floorred + floorblue )



Diverse K-choice Secretary 
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Nred = Nblue = 6
K = 3 1≤ Kred ,Kblue ≤ 2

slack = 1
Sred = Sblue = 2 S = 4

6 1 3 2 5 74 8 2 1 9 5

Competitive ratio
1
e

far from optimal

joint with Yang [Drexel] and Jagadish [UMich] - [EDBT 2018]



Per-category warm-up is crucial
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Per-category warm-up period Common warm-up period

synthetic data with categories A and B, score depends on category,  lower for A

diversity by design

joint with Yang [Drexel] and Jagadish [UMich] - [EDBT 2018]



Diversity is achievable
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deferred list with deferred list

Forbes US Richest: N=400, K=4 (27 female, 373 male) 

diversity on gender: select 2 per gender 



Warm-up can be shorter
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Forbes US Richest: N=400, K=4 (27 female, 373 male) 

deferred list variant, diversity on gender: select 2 per gender 



Lack of diversity: harms and approaches
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Like all technologies before it, artificial intelligence will reflect the values 
of its creators. So inclusivity matters — from who designs it to who sits 
on the company boards and which ethical perspectives are included.  

Otherwise, we risk constructing machine intelligence that mirrors a 
narrow and privileged vision of society, with its old, familiar biases 
and stereotypes.

+ Fairness in ranked outputs, 
joint with Yang [Drexel] 
[FATML 2016] [SSDBM 2017]



Fides: a responsible data science platform 
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Systems support for 
responsible data science 

Responsibility by design, 
managed at all stages of the 
lifecycle of data-intensive 
applications 

Applications: data science 
for social good
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[BIGDATA] Foundations of responsible data management, 09/2017-



http://demo.dataresponsibly.com/rankingfacts/nutrition_facts/

joint with Yang [Drexel], Howe [UW], Jagadish & Asudeh [UMich], Miklau [UMass] - [SIGMOD 2018]
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How do we make an impact?

• An emerging community of research and practice:

- FAT*: Conference on Fairness, Accountability and Transparency  

• Getting the existing technical communities on board: 

- SIGMOD 2018 session, VLDB 2018 debate, EDBT 2016 tutorial, … 

• Policy: 

- NYC algorithmic transparency law  

- ACM Code of Ethics, CPEDS 

• “Translation”: 

- Let’s build tools! Data Synthesizer, Ranking Facts, …. 

- PhillyOpenData 

�41



�42

http://drops.dagstuhl.de/opus/volltexte/2016/6764/pdf/dagrep_v006_i007_p042_s16291.pdf

The goals of the seminar were to 
assess the state of data analysis in 
terms of fairness, transparency and 
diversity, identify new research 
challenges, and derive an agenda 
for computer science research and 
education efforts in responsible data 
analysis and use. 

An important goal of the seminar was 
to identify opportunities for high-
impact contributions to this 
important emergent area 
specifically from the data 
management community.



�43

Dagstuhl Manifestos 7(1): 1-29 (2018)



�44



Responsible data science
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data protectionfairness diversity transparency

• Be transparent and accountable  

• Achieve equitable resource distribution 

• Be cognizant of the rights and preferences of individuals



DB+COMSOC: databases meet computational 
social choice
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[NSF III + BSF] DBCOMSOC, 2018-



Elections and winners
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TEASER!

joint with Kimelfeld [Technion] and Kolaitis [UC Santa Cruz] [IJCAI 2018]

candidates
voters

1 1 0 0

1 1 0 0

1 1 0 0

2 3

1 0

Who are the 
possible winners?

Does Trump win in 
every completion?

scoring rules: 
plurality, veto, 
2-approval…



Who are the 
possible winners?

Context makes a difference!
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TEASER!

joint with Kimelfeld [Technion] and Kolaitis [UC Santa Cruz] [IJCAI 2018]

scoring rules: 
plurality, veto, 
2-approval…

candidates
voters

Is it possible that the 
first spouse will be 

US-born?

Is every winner 
pro-choice?

cand party spouse born pro-choice
Clinton D USA yes
Trump R Slovenia no
Rubio R USA no

Sander
s

D USA yes

Candidates

Does Trump win in 
every completion?



Thank you!


