
Integrating Social Values into Software Design Patterns

Waqar Hussain, Davoud Mougouei, Jon Whittle
Faculty of Information Technology

Monash University

Clayton, Victoria, Australia

{waqar.hussain, davoud.mougouei, jon.whittle}@monash.edu

ABSTRACT

Software Design Patterns (SDPs) are core solutions to the recurring

problems in software. However, adopting SDPs without taking into

account their value implications may result in breach of social val-

ues and ultimately lead to user dissatisfaction, lack of adoption, and

financial loss. An example is the airline system that overcharged

people who were trying to escape from the Hurricane Irma. Al-

though not intentional, overlsight of social values in the design of

the airline system resulted in significant customer dissatisfaction

and loss of trust. To mitigate such value breaches in software design

we propose taking social values into account in SDPs explicitly. To

achieve this, we outline a collaborative framework that allows for

(i) specifying the value implications of SDPs, (ii) developing or ex-

tending SDPs for integrating social values, (iii) providing guidance

on the value-conscious adoption of design patterns, (iv) collect-

ing and analyzing insights from collaborators, (v) maintaining an

up-to-date library of the valufied design patterns, and (vi) incorpo-

rating lessons learned from the real-world adoption of the valuefied

design patterns into the proposed framework for its continuous

improvement in integrating social values into software.

KEYWORDS

Design Patterns, Social Values, Framework, Fairness

1 INTRODUCTION

Software embodies social values that are intricately intertwined, but

remain masked from the common view. The far reaching economic,

political, and social impact of software has long been recognized in

a variety of disciplines including social sciences, engineering and

health informatics [16, 23, 32]. As software gets woven deeper into

the very fabric of modern societies making them increasingly de-

pendent on large and complex software systems, designing software

for societal values has become increasingly important [33]. How-

ever, value breaches in software continue to make the headlines

for example the societal impact of Volkswagon fuel emission fiasco

[1] and its resulting impact on the company's financial position

and reputation. Similarly the debacles of Novopay and Queens-

land payroll systems in New Zealand and Australia respectively,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

FairWare’18, May 29, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5746-3/18/05. . . $15.00
https://doi.org/10.1145/3194770.3194777

where value breaches from the involved parties resulted in huge

financial losses and the credibility of the concerned governments

to deliver reliable systems for public use [9, 31]. Despite the avail-

ability of several Software Engineering codes of ethics [19, 20, 30]

urging technologist to address societal values in technology cre-

ation, violations of values persist in various software domains such

as Robotics, Machine Learning and AI [6], Software Design [35],

Internet of Things, and eHealth solutions [2, 33, 34]. The perceived

omissions of certain stakeholder values by the implementers as a

result, has created an atmosphere of distrust which often leads to

reluctance of end-users to adopt technological solutions.

The discipline of design can induce social change and has placed

designers in a position to project ethical and meaningful change

[35]. Designers are thus, entrusted with immense power as well

as ethical and moral responsibility [4]. However, we are far from

understanding the specifics of how designers’ power and responsi-

bility is enacted during the process of designing a software.

Design Patterns, as templates of captured experiential wisdom,

provide empirically proven solutions to address recurring design

problems [36]. Although design patterns do not deal with values

explicitly, they can be used in combination with best practices from

participatory design to incorporate relevant human values into tech-

nology [11]. The interrelation of technical design and social values

is well understood and reported [5, 14, 15]. Design patterns are

applied to implement technical design decisions at key junctures of

software development whichmakes them instrumental for injecting

social values into software. We posit that value breaches are often

caused by not considering social values during software design e.g.

adopting certain design patterns that either lack the desired values

or are misaligned with them. To mitigate value breaches and their

unintended yet adverse impacts on the society, we propose to take

social values into account explicitly during design by embedding

these values into design patterns, i.e. to valuefy design patterns.

To this end we propose a framework referred to as the Value-

Design Hub (VDH), which allows for valuefication of software de-

sign patterns. VDH is aimed at bringing out value propositions im-

plicit in design patterns and facilitating their specification through

stakeholder collaboration. Furthermore, using VDH, the collabora-

tive selection and adoption of the valuefied design patterns during

design and development will allow for a more consistent applica-

tion of social values in software technologies. For valuefication of

software design patterns this research specifically aims to:

(A1) Specify the value implications of the existing design patterns

and the dependencies/conflicts among them;

(A2) Extend the existing design patterns or develop new patterns

to account for social values;

(A3) DevelopGuidelines, Indicators, Tools, and Techniques (GITTs)

for value-conscious adoption of design patterns.

8

2018 ACM/IEEE International Workshop on Software Fairness

Valuefication of the design patterns needs to be conducted in

close participation with entities involved in the design and use of

software. Such valuefication must be carried out based on the in-

sights from stakeholders such as users, software design experts, and

social scientists. Similarly, it is important to monitor the adoption of

the valuefied design patterns in software projects and incorporate

feedback into the those patterns as well as the GITTs developed

for the effective adoption of the valuefied patterns. This can be

achieved through:

(A4) Gathering and analyzing insights on the value aspects of the

design patterns.

(A5) Collecting and analyzing feedback on the adoption of the

valuefied design patterns.

(A6) Maintaining an up-to-date list of the value breaches, value-

fied design patterns, and GITTs.

2 BACKGROUND

Decades of software engineering research has led to a range of

effective and successful software development methods. The history

is such that early methods of Software Engineering focused on how

to get the functionality correct, and subsequent methods focused on

non-functional requirements (NFRs) such as performance, safety

and security [3]. In the case of NFRs software methods evolved

towards a recognition that each NFR needs to be explicitly managed

as early in the software development lifecycle as possible, rather

than being considered an afterthought. In the case of security, this

mitigated the negative economic impact of security breaches in

software systems [7]. Some of the noteworthy approaches to embed

values in software design are Values Sensitive and Value Centered

Design [10, 17], Participatory [28] and Values-Led participatory

Design [21]. These approaches however, lack systemic thinking [12]

and remain restricted to early stages of development. Despite the

availability of several Software Engineering codes of ethics [19, 20,

30] and recent initiatives such as TechEthics conference [8] urging

technologist to prioritize and adhere to relevant social values in

technology creation, violations of values persist in various software

domains such as Robotics, Machine Learning and AI [6], Software

Design [35] and nanotechnologies [34].

In software engineering, a cross-cutting concern is a feature

that cannot easily be isolated to a single module, but rather affects

the entire application. Typical examples are logging and security.

Social values are in fact good examples of cross-cutting concerns.

When designing a workplace HR system to be sensitive to gender

equality, for example, the designer will not be able to easily isolate

all gender equality issues in one place, as gender considerations

will be found in leave request modules, promotion modules, flexible

working practice monitoring modules, etc. It is, however, important

to have an overall view on the social value of gender equality;

otherwise, some modules may not handle the value properly. This

is where design methods for cross-cutting concerns, such as MATA

(Modeling Aspects Using a Transformation Approach) [38], can

help, as they allow the designer to switch easily back and forth

between a value-summary view and a module-specific view.

Traditional 3GL programming languages were not able to isolate

such cross-cutting examples in one place; this led to the develop-

ment of aspect-oriented languages, such as AspectJ, that allow the

designer to specify the cross-cutting design in one place and a

compiler automatically distributes the concern across the entire

application. MATA tool [38] was the first to provide a formal under-

pinning for handling cross-cutting concerns during software design;

designers could specify design concerns as UML 'fragments' and

a graph-theoretic transformation engine then 'weaved' these frag-

ments into the main design. MATA also provided static analysis

techniques to automatically detect conflicts between fragments –

this is important because cross-cutting concerns typically conflict

with each other (for example, the introduction of security mecha-

nisms will usually lead to a downgrade in performance).

Whilst the software engineering community has focused heavily

on safety, security and other critical NFRs in recent years, there

has been comparatively little focus on broader social values – such

as inclusion, integrity, well-being, transparency, to name a few

[22]. Yet, it has been shown that a lack of consideration of social

values in software systems can lead to the same consequences as

a major security breach. In the case of the Volkswagen emissions

scandal, software was deliberately designed in contradiction to the

company's corporate values of “for responsible thinking”, a decision

that led to the resignation of the CEO, a 30% drop in VW's stock

price and 25% drop in sales within a year. This brutal economic

impact, felt more broadly across the entire automotive industry, was

a direct result of a misalignment of the company's stated corporate

values and the realization of its values in its software systems. This

is not, however, an isolated example of where software inherently

embodies values misaligned with those values which are claimed.

Galhotra et al. [18] cite many examples of 'biased 'software sys-

tems, which act in a way different to the values intended by its

designers; supply and demand software pricing systems that unex-

pectedly led to price gouging on airline tickets for those trying to

evacuate from Hurricane Irma – as the New York Times reported

at the time, “There are no ethics valves built into the system that

prevent an airline from overcharging during a hurricane.”

In short, whether deliberately or unintentionally, there are now

countless examples of where software has not been designed with

social values in mind and, because of this, billions of dollars are

routinely wiped off company market capitalizations or passed on

to the consumer in terms of price hikes. This is in addition to the

less tangible social impacts of such breaches. We argue that there is

currently no software developmentmethodology that can be used to

properly align stated social values (as stated by an organization) and

the implicit values that a software system embodies. Although there

are existing guidelines for considering certain aspects of values and

ethics (e.g., ACM code of ethics), current software methods do not

provide a systematic way of specifying, designing and monitoring

these values throughout a software development process.

3 THE VALUE-DESIGN HUB

To achieve aims (A1)-(A6) described in Section 1, we outline a semi-

formal framework, referred to as Value-Design Hub (VDH), that

lays a solid foundation for collaborative valuefication of design

patterns. The framework will be developed in participation with

software designers, users, and social scientists. VDH comprises of

six components as depicted in Figure 1, where each component

(C1)-(C6) corresponds to its respective aim in (A1)-(A6) :

9

(C1) VDH Classifier: includes a set of Guidelines, Indicators, Tools,

and Techniques (GITTs) for the classification of the existing

design patterns by specifying their value implications on

software;

(C2) VDH Pattern Maker: includes a set of GITTs for extending

and/or developing a set of design patterns that explicitly take

into account social values;

(C3) VDH Guide: provides a set of GITTs that facilitate the adop-

tion of the valuefied design patterns in software projects;

(C4) VDH Connector: includes a set of GITTs for gathering and

analyzing the insights on the value aspects of the design

patterns;

(C5) VDHMonitor: includes a set of GITTs for monitoring, collect-

ing, and analyzing feedback on the adoption of the valuefied

design patterns;

(C6) VDH Maintainer: keeps track of different variations of the

valufied design patterns as well as GITTs provided by (C1)-

(C5). VDH Maintainer further allows for updating design

pattern and the GITTs provided by VDH Guide.

Components (C1)-(C3) are directly concerned with the valuefi-

cation of the design patterns while (C4) provides input to (C1)-(C3).

Also (C5) enables monitoring the feedback on the adoption of the

valuefied patterns. In other words, VDH Monitor helps enhance

the effectiveness of VDH Classifier, VDH Pattern Maker, and VDH

Guide by incorporating the feedback from collaborators. More-

over, (C6) maintains the valuefied design patterns as well as the

GITTs provided by (C1)-(C5). The proposed VDH framework and its

main components will be validated by studying real-world software

projects.

Figure 1: The Value-Design Hub and its Components.

Figure 1 demonstrates the major components of VDH at the

highest level of abstraction. These components will be developed

as the main outcomes of the research to integrate social values into

software design in a collaborative manner. The main collaborators

of VDH are users as well as the experts in software design and

social sciences. They will collaborate over valuefication of the de-

sign patterns as depicted in Figure 2. The collaborates moreover,

provide insights on the valuefication process. Valufication may be

carried out in three different ways depending on the input/insights

collected from collaborators. One is to classify an existing design

pattern by specifying the value implications of the pattern on soft-

ware. This can be achived using the Classifier component of VDH.

Another way to valuefy design patterns is to extend an existing

pattern or develop a new pattern using VDH Pattern Maker. Finally,

the valuefication of design patterns can be assisted by providing

guidance on the adoption of the valuefied design patterns, which

is supported by VDH Guide. Figure 2 gives the use case diagram

of VDH, where the main functionalities of VDH, corresponding to

the VDH components, and their association with different types

of collaborators are demonstrated. The VDH admin in Figure 2

specifies human actors that are responsible for the integrity of the

process of collecting insights from collaborators as well as updat-

ing the pattern library. Pattern library of VDH includes the list of

described design patterns including the the valuefied patterns and

their meta-data. The main functionalities of VDH are described in

the following subsections.

3.1 Collecting Insights from Collaborators

VDH connector collects and manages three different types of in-

puts/insights that can be provided by software users and experts,

i.e. collaborators, to be used as the input for the valuefication pro-

cess (Figure 3). The first type of the inputs/insights includes design

practices that are not included in the established design patterns,

yet they can be used to account for social values in software. Such

practices can be identified, for instance, by studying the design

practices that have resulted in a significant improvement in social

aspects of real-world software. These practices are used to extend

and/or develop design patterns that assist integrating social values

into software. Moreover, the existing design patterns may positively

or negatively influence social values in software products. In this

regard, studying the value-related impacts of adopting different

design patterns will help provide guidance on the value-conscious

adoption of those patterns in software projects. The second type of

the inputs/insights for VDH hence are required to help specify the

value implications of the existing design patterns. Finally, the third

type of the inputs/insights contains the knowledge on the effective

use of the valuefied design patterns. This knowledge comes from

the collaborators and will be made available to the designers in

terms of Guidelines, Indicators, Tools, and Techniques (GITTs) that

assist a value-conscious adoption of design patterns. To create an

initial set of GITTs for VDH Connector, we are currently studying,

in collaboration with social scientists and software practitioners,

the implicit and embedded social values in existing software de-

sign patterns. We are further carrying out industrial studies to

investigate the effectiveness of the existing design techniques in

value-conscious software design.

3.2 Classification of the Design Patterns

The design patterns used in software projects convey different val-

ues, which may or may not be aligned with the values of the society

for which that software product is designed. In other words, de-

sign patterns may have value implications, which in many cases

10

Figure 2: The use case diagram of the Value-Design Hub.

are not explicitly stated in the description of those patterns. One

of the main aims of this research is to develop VDH Classifier to

help investigate the value implications of the existing software

design patterns based on the insights gathered through collaborat-

ing with the designers and users of software products as well as

the experts in social sciences. This further helps understand and

classify anti-patterns that are mainly unintended and caused by the

indirect consequences of using certain design patterns, applying

them in a wrong context, or using them for a wrong audience (in-

dividuals/society). Classified design patterns can be semi-formally

described to enable automated analysis of those patterns. Moreover,

graph-based techniques can be explored to enable analysis of rela-

tions and conflict among the value aspects of the design patterns.

To build a foundation for VDH Classifier, we are currently studding

the value implications of the existing software design patterns and

anti-patterns in software projects. Our studies are designed in col-

laboration with social scientists and software practitioners from

different areas including digital health and financial sector.

3.3 Extending or Developing Patterns

VDH Pattern Maker is aimed to valuefy design patterns by either

extending the existing patterns in a way that they account for

social values or developing new design patterns that integrate social

values into software. In either case, design practices, which may not

belong to the existing design patterns, but they properly address

social aspects of software, can be described as valuefied design

patterns and made available to software practitioners. To assist

this, a semi-formal description language will be devised for the

extension or creation of the design patterns. Such language will

further enable semi-automated analysis of the design patterns. We

are currently studying best practices in real-world software that

assist value-conscious design of software products. Those practices

will be used to propose an initial set of the extended or developed

design patterns that integrate social values into software.

3.4 Providing Guidance on the Adoption

The usage of the design patterns includes selection and adoption

of those patterns. Selection of the design patters is non-trivial

due to the value dependencies [25–27] among different design pat-

terns. In other words, a design pattern may help integrate a certain

type of value into software while causing a breach in other value

types. Moreover, the effectiveness of a valuefied design pattern may

change in the presence or absence of other design pattens. These

factors make selection of the design patterns a complex task, which

11

Figure 3: Process Flow in Value-Design Hub.

requires analyzing the positive and negative dependencies among

the value implications of design patterns. To assist this, we develop

a decision support system, which allows for analyzing the impacts

of different design patterns on the values the society in which a

software product is intended to be used. Moreover, the gap between

the design and implementation has always been a major challenge

in software development [29], which also affects the adoption of

design patterns. To mitigate this we develop a set of GITT that

facilitate a proper adoption of the design patterns.

3.5 Monitoring the Adoption of the Patterns

Valuefication of software design patterns in VDH will be achieved

by VDH Classifier, VDH Pattern Maker, and VDH Guide. VDH Con-

nector connects the users, software designers, and social scientists

to collaboratively valuefy design patterns. Feedback on real-world

adoption of the valuefied design patterns and the GITTs provided

by VDH framework is also very important. Collecting such feed-

back, analyzing them, and incorporating them into VDH is essential

to the collaborative and evolutionary nature of the framework. This

helps iteratively enhance the effectiveness of VDH in integrating so-

cial values into software design. In this regard, establishing a social

monitoring system for incorporating real-time social media data

will help power VDH Monitor. VDH will also include techniques

for identifying value breaches in software design patterns and/or

the use of those patterns by monitoring users behavior such as

their usage pattern, facial expressions, and several other indicators,

which can be monitored using machine learning.

3.6 Maintaining the Valuefied Patterns

Maintaining an up-to-date library of the valuefied design patterns

helps designer to systematically get access to the best practices that

assist a value-conscious software design and avoid using patterns

that may result in breaching social values in software. Moreover,

keeping a list of the value breaches will assist software designers

in devising patterns that mitigate such breaches in software. The

necessity of this has been observed by the projects such as NVD

(National Vulnerability Database) [39] in which security aspects

are taken into account. VDH on the other hand, keeps record of the

12

design patterns and value breaches concerning several aspects of

social values including security, conformity, tradition, benevolence,

self direction, and so on. Hence, one of the main outcomes of VDH

as depicted in Figure 3 is a library of the valuefied design patterns,

which includes a list of semi-formally described design patterns

and their corresponding met-data. Moreover, VDH components

include/provide different GITTs for the integration of social values

into software design. Such GITTs are subject to frequent changes

based on the insights/feedback provided by the users as well as the

experts in software design and social sciences. The VDH framework

further provides knowledge sharing mechanisms such as forums

and wikis to enable collaborations among software users, designers,

and social scientists on the integration of social values into software.

For such wide scale collaborations, among VDH components as

well as the users and experts, effective techniques are required

to facilitate maintaining an up-to-date list of the design patterns,

GITTs, and all the data gathered from collaborates. This will be

managed by VDHMonitor. Finally, VDHMonitor can customize the

GITTs depending on the values of the society for which a software

product is designed.

3.7 A Valuefication Example

User interface design patterns (UIDPs) as a subcategory of SDPs

are widely used in software projects [24, 37]. Social values however,

may impact the design of the user interface of an application or

website [37]. These values manifest themselves in terms of choices

of symbols, heroes/heroines, and rituals, which vary across dif-

ferent cultures. To reduce the risk of rejecting software thus, it is

important to account for the values of the target society in UIDPs.

One of the interesting examples of how value differences impact

the design of software user interfaces is discussed by Marcus et

al. [24]. In their work Marcus et al., highlighted the differences

between the Individualism in Western societies (specifically USA)

and Collectivism in the Costa Rican culture. The authors observed

certain features in the user interface design of the websites of two

different national parks, one from the USA and the other from

Costa Rica, manifesting this cultural difference. Marcus et al. [24]

explained that the emphasis in the US website was more on the

aims of the visitor and possible actions in coming to the park. The

Costa Rican website on the other hand, featured an emphasis on

the nature, downplayed the individual tourist, and used a slogan

to promote a national agenda. An even more startling difference

was that instead of a typical Western display of consuming new

technologies or experiences, the website was filled with several po-

litical announcement that the Costa Rican government has signed

an international agreement against the exploitation of children and

adolescents.

One way to valuefy design patterns in VDH is to classify those

patterns based on their value implication. In the case of the national

park example, the UIDP used for designing the website of the US

national park can be classified by the Classifier component of VDH

as Individualist, whereas the UIDP used for the Costa Rican website

can be classified as Collectivist. This helps designers of newwebsites

to choose a user interface design pattern[37] that suits the value of

their end user whether that is to be more Individualist or Collectivist.

To facilitate this, the Maintainer component of VDH keeps record

of an up-to-date library of the semi-formally described valuiefied

design patterns with their corresponding meta-data. It is worth

mentioning that a valuefied design pattern may, simultaneously,

belong to different classes of values. For instance, a UIDP classi-

fied as Individualist may also emphasize on Femininity by using

features that promote modesty, tenderness, and a concern with

both quality of life and material success [24]. Information that help

valuefy UIDPs may come from users, designers, or social scientists

that examine the websites/applications with respect to their value

implications. This is facilitated by the Connector component of

VDH. In the case of the national park example, examiners of the

websites observed features that finally classified them as Individ-

ualist or Collectivist. Now the question is do users of the website

feel the same way? this is specially important when the website

is intended to be Individualist or Collectivist. To find this out, the

Monitor component of VDH helps receive feedback on the effec-

tiveness of the valuefied design patterns in embedding the intended

social values into software. Such feedback can be used to further

improve the effectiveness of the valuefication in VDH.

4 CONCLUSIONS

In this paper we discussed the adverse impacts of breaching social

values in software design. We further elaborated and provided ex-

amples, such as the Hurricane Irma, on how ignoring social values

may result in breaching social values and ultimately lead to user

dissatisfaction, lack of proper adoption, financial loss, and other

social implications. To mitigate the adverse impacts of breaching

social values in software, this paper proposed a framework for col-

laborative integration of social values into software design patterns.

Through collaborations with users, designers, and social scientists,

the proposed framework, referred to as value-design hub (VDH),

allows for (i) specifying the value implications of the design pat-

terns, (ii) extending or developing design patterns that specifically

account for social values, (iii) providing guidance on the adoption

of the design patterns with respect to social values, (iv) collecting

and analyzing insights from collaborates, (v) maintaining an up-

to-date library of the valuefied design patterns, and (vi) collecting

collaborators’ feedback and incorporating those feedback into the

framework.

REFERENCES
[1] Brian Benchoff. 2015. Ethics in engineering: Volkswagen’s diesel fiasco. http:

//hackaday.com/2015/09/23/ethics-in-engineering-volkswagens-diesel-fiasco
[2] Alofi Shane Black and Tony Sahama. 2016. Chronicling the patient journey: co-

creating value with digital health ecosystems. In Proceedings of the Australasian
Computer Science Week Multiconference. ACM, 60.

[3] Barry Boehm. 2006. A view of 20th and 21st century software engineering. In
Proceedings of the 28th international conference on Software engineering. ACM,
12–29.

[4] Grady Booch. 2014. The Human and Ethical Aspects of Big Data. IEEE Software
31, 1 (jan 2014), 20–22. https://doi.org/10.1109/MS.2014.16

[5] Geoffrey Bowker, Susan Leigh Star, Les Gasser, and William Turner. 2014. Social
science, technical systems, and cooperative work: Beyond the great divide. Psychol-
ogy Press.

[6] Joanna Bryson and Alan Winfield. 2017. Standardizing Ethical Design for Artifi-
cial Intelligence and Autonomous Systems. Computer 50, 5 (may 2017), 116–119.
https://doi.org/10.1109/MC.2017.154

[7] Huseyin Cavusoglu, Birendra Mishra, Srinivasan Raghunathan, and Published
M E Sharpe. 2014. The Effect of Internet Security Breach Announcements on
Market Value : Capital Market Reactions for Breached Firms and Internet Security
Developers Source : International Journal of Electronic Commerce , Vol . 9 , No .
1 , Measuring the Business Value of . 9, 1 (2014), 69–104.

13

[8] Raja Chatila, Kay Firth-Butterflied, John C. Havens, and Konstantinos Karachalios.
2017. The IEEE Global Initiative for Ethical Considerations in Artificial Intel-
ligence and Autonomous Systems [Standards]. IEEE Robotics & Automation
Magazine 24, 1 (mar 2017), 110–110. https://doi.org/10.1109/MRA.2017.2670225

[9] Tony Clear. 2013. Novopay: dilemmas in a nearshore outsourcing project failure
[invited presentation]. (2013).

[10] Gilbert Cockton. 2005. A development framework for value-centred design. In
CHI’05 extended abstracts on Human factors in computing systems. ACM, 1292–
1295.

[11] Anita H M Cremers, Mark A Neerincx, and Jacomien G M De Jong. 2013. In-
clusive design: Bridging theory and practice. 10th International Conference on
Engineering Psychology and Cognitive Ergonomics: Applications and Services, EPCE
2013, Held as Part of 15th International Conference on Human-Computer Inter-
action, HCI 2013, 21 July 2013 through 26 July 2013, Las Vegas, NV (2013), 323–
332. http://dx.doi.org/10.1007/978-3-642-39354-9-35{%}5Cnhttp://xref.tno.nl/
bibliotheek/sv-015068/TNO/Publicaties/2013/cremers-2013-inclusive.pdf

[12] Maria Angela Ferrario, Will Simm, Jon Whittle, Christopher Frauenberger, Geral-
dine Fitzpatrick, and Peter Purgathofer. 2017. Values in Computing. In Pro-
ceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in
Computing Systems - CHI EA ’17. ACM Press, New York, New York, USA, 660–667.
https://doi.org/10.1145/3027063.3027067

[13] Eduardo Figueiredo, Bruno Silva, Claudio Sant’Anna, Alessandro Garcia, Jon
Whittle, and Daltro Nunes. 2009. Crosscutting patterns and design stability:
An exploratory analysis. In Program Comprehension, 2009. ICPC’09. IEEE 17th
International Conference on. IEEE, 138–147.

[14] Andrew J Flanagin, Craig Flanagin, and Jon Flanagin. 2010. Technical code and
the social construction of the internet. NewMedia & Society 12, 2 (2010), 179–196.

[15] Batya Friedman. 1997. Human values and the design of computer technology.
Number 72. Cambridge University Press.

[16] Batya Friedman, Peter H. Kahn, Alan Borning, and Alina Huldtgren. 2013. Value
Sensitive Design and Information Systems. Springer, Dordrecht, 55–95. https:
//doi.org/10.1007/978-94-007-7844-3_4

[17] Batya Friedman, Peter H Kahn, Alan Borning, and Alina Huldtgren. 2013. Value
sensitive design and information systems. In Early engagement and new technolo-
gies: Opening up the laboratory. Springer, 55–95.

[18] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. 2017. Fairness testing:
testing software for discrimination. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering - ESEC/FSE 2017. ACM Press, New York,
New York, USA, 498–510. https://doi.org/10.1145/3106237.3106277

[19] Ph Galiay. 2009. A Code of Conduct for Responsible Nanosciences and Nanotech-
nologies Research in Europe. Nanotec 2009 (2009), 23.

[20] Donald Gotterbarn and Keith W. Miller. 2009. The Public is the Priority: Making
Decisions Using the Software Engineering Code of Ethics. Computer 42, 6 (jun
2009), 66–73. https://doi.org/10.1109/MC.2009.204

[21] Ole Sejer Iversen and Tuck W. Leong. 2012. Values-led participatory design. In
Proceedings of the 7th Nordic Conference on Human-Computer Interaction Making
Sense Through Design - NordiCHI ’12. ACM Press, New York, New York, USA, 468.
https://doi.org/10.1145/2399016.2399087

[22] Deborah G Johnson and Helen Nissenbaum. 1995. Computers, ethics & social
values. Prentice-Hall, Inc.

[23] Deborah G. Johnson and Helen Fay. Nissenbaum. 1995. Computers, ethics & social
values. Prentice Hall. 714 pages. https://dl.acm.org/citation.cfm?id=206759

[24] Aaron Marcus and Emilie West Gould. 2000. Crosscurrents: cultural dimensions
and global Web user-interface design. interactions 7, 4 (2000), 32–46.

[25] Davoud Mougouei. 2016. Factoring requirement dependencies in software re-
quirement selection using graphs and integer programming. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software Engi-
neering - ASE 2016. ACM Press, New York, New York, USA, 884–887. https:
//doi.org/10.1145/2970276.2975936

[26] Davoud Mougouei, David M. W. Powers, and Asghar Moeini. 2017. An Integer
Linear Programming Model for Binary Knapsack Problem with Dependent Item
Values. Springer, Cham, 144–154. https://doi.org/10.1007/978-3-319-63004-5_12

[27] Davoud Mougouei, David M. W. Powers, and Asghar Moeini. 2017. Dependency-
aware software release planning. In 2017 IEEE/ACM 39th International Conference
on Software Engineering Companion (ICSE-C). IEEE, 198–200. https://doi.org/10.
1109/ICSE-C.2017.74

[28] Michael J Muller and Sarah Kuhn. 1993. Participatory design. Commun. ACM 36,
6 (1993), 24–28.

[29] Gail C Murphy, David Notkin, and Kevin J. Sullivan. 2001. Software reflexion
models: Bridging the gap between design and implementation. IEEE Transactions
on Software Engineering 27, 4 (2001), 364–380.

[30] Michael D Myers and John R Venable. 2014. A set of ethical principles for design
science research in information systems. Information & Management 51, 6 (2014),
801–809.

[31] Queensland. Department of Justice, Attorney-General, and Richard Chesterman.
2013. Queensland Health Payroll System Commission of Inquiry: Report. Queens-
land Department of Justice and Attorney-General.

[32] Bryan Pfaffenberger. 2017. Technological Dramas Author (s): Bryan
Pfaffenberger Published by : Sage Publications , Inc . Stable URL :
http://www.jstor.org/stable/690096 Technological Dramas. 17, 3 (2017), 282–
312.

[33] Alina Pommeranz, Christian Detweiler, Pascal Wiggers, and Catholijn M Jonker.
2011. Self-reflection on personal values to support value-sensitive design. In
Proceedings of the 25th BCS Conference on Human-Computer Interaction. British
Computer Society, 491–496.

[34] Arie Rip and Douglas K. R. Robinson. 2013. Constructive Technology As-
sessment and the Methodology of Insertion. 37–53. https://doi.org/10.1007/
978-94-007-7844-3_3

[35] Marie Louise Juul Søndergaard and Lone Koefoed Hansen. 2017. Designing with
Bias and Privilege?. In Nordes 2017, Vol. 7.

[36] RN Taylor and A Van der Hoek. 2007. Software design and architecture the
once and future focus of software engineering. Future of Software Engineering, . . .
(2007). http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=4221623

[37] Jenifer Tidwell. 2010. Designing interfaces: Patterns for effective interaction design.
" O’Reilly Media, Inc.".

[38] Jon Whittle and Praveen Jayaraman. 2007. MATA: A Tool for Aspect-Oriented
Modeling Based on Graph Transformation. In Models in Software Engineering.
Springer Berlin Heidelberg, Berlin, Heidelberg, 16–27. https://doi.org/10.1007/
978-3-540-69073-3_3

[39] Su Zhang, Doina Caragea, and Xinming Ou. 2011. An empirical study on using the
national vulnerability database to predict software vulnerabilities. In International
Conference on Database and Expert Systems Applications. Springer, 217–231.

14

