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Fairness and Machine Learning

 The dream: if we teach machines to perform
sensitive decisions, they will not suffer from
human biases.

* The reality: the GIGO principle still holds,
regardless of whether we are talking of
statistical models or software.



The Message

* There is only so much data alone can tell you
about fairness.

* I’'m not talking about “just” value judgments.

 We should highlight the role that the data-

generating causal process has in shaping our
notions of fairness.



Nobody is Saying This is Easy

* At no point I will suggest that building a causal
model is easy.

* Some untested and untestable assumptions
will be needed.

 The idea is to make your assumptions as
explicit as possible, hopefully being “less
wrong” in the end.



The Scope of this Talk

 We consider prediction and intervention
problems (more of the former).

* |n prediction problems, we will have:
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. features, or attributes of an individual
. the protected attributes of an individual

: the target, what we would like to predict

. our prediction



Prediction Problems

* Prediction here means inferring a property Y that will
be used for decision making.

 For example:

— Y =1 means “this person will default on a loan” (for the
decision, “should | give this person a loan”?)

— Y =1 means “this person will commit a crime in two

years” (for the decision, “should | release this convict
now?”)

 We would like to predict Y in a “fair” way, meaning
that our predictions should not be “biased” against
particular instances of A.



Primitives

* Even if we take the choice of what goes in A as
a primitive, it is still not obvious what we

mean by being fair.

e Afirstidea: “ensure that Y does not use A”.

* This is known to be unsatisfactory.



Examples

* Fqualized odds: given the outcome Y, attribute A
provides no further information about my
prediction Y.

* Calibration: given my prediction Y, attribute A
provides no further information about the
outcomeY.

* If Ais on average informative of Y, we cannot
reconcile the above.

— Remember, here we do not control Y (directly). We
decide on predictorY'.



Putting It in the
Context of a Causal Model

* Atoy model: imagine A is race, X is “owns a
red car” and Y is “crashes car in one year”.

e Let’s (informally) draw a causal diagram
showing cause-effect relationships among
those. It will include a “unobserved trait” U
measuring aggressiveness.

— We will get into more formal definitions later.



A Causal Diagram
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Some Initial Conclusions

e Ais not a cause of Y.

* |f we build a predictor based on X, it tells us
something both about A and about U.

* Hence, our predictor will be different for
different values of A, which does not seem

appropriate.



A Second Causal Diagram
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Which Conclusions?

* Ais now a cause of Y (indirectly).

* |tis now impossible to satisfy both equalized
odds and calibration simultaneously.

* Judgment call: is the pathway A =» X =Y
“fair”?



Zooming In, with Another Example

* A here stands for race, Y for loan default.
UD)~@— @0y

 Same idea, augmented with a mediator:
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A Causal Primitive:
Counterfactual Fairness

* |f we have some protected attribute like race,
and a decision such as length of sentence, then
our decision satisfies counterfactual fairness if

“had the protected attributes (e.q., race) of the
individual been different, other things being
equal, the decision would have remained the
same”

* A causal model is necessary to infer such claims
from data.



Workflow

* Regardless of the machine learning algorithm to be
used, work with a domain expert to estimate a causal
model of your data.

— It’s a model of the world, not of your software.
* Choose any machine learning algorithm of interest,

any black-box that takes as inputs observed and
unobserved variables in your domain.

— Select a set of variables based on which sets respect
counterfactual fairness.

— If necessary, infer unobserved variables from the observed
ones.



Formalizing the Idea

* Formal notions of counterfactuals date back
at least to Jerzy Neyman in the 1920s.

* | will follow mostly the Structural Causal
Model (SCM) framework of Judea Pearl, which
has close links to the work of James Robins,
and that of Spirtes, Glymour and Scheines.



Structural Causal Models

* Adirected acyclic graph (DAG) postulates “direct
cause-effect” pairs.

— Each vertex in the graph is a random variable in a
distribution.

* Each variable Vis given an equation that
deterministically defines the value of V as a
function of its “parents”.

— Such equations are postulated to be structural, in the
sense that it follows the cause-effect direction.



The Operational Meaning

* This “DAG with equations” is causal in the
sense that it must encode the effects of a
perfect intervention.

URain UB aaaaa ter

l 1 Rain = fr(Uggin)

Barometer = fg(Rain, Ug,,ometer)

Rain —_—> Barometer



Interventions

* Another primitive. It is a “overriding” operator,
sets a variable to a fixed value of interest. Lower
case here represents constants.

UB aaaaa ter

1 Rain =r
Barometer = f4(r, U

Rain

Barometer)

r —_—> Barometer



Interventions

e |tis the notion of intervention that leads to
the asymmetric nature of causality.

l Rain = f(Ug,..)
Barometer = b

Rain b



Interventions

* |tis the notion of intervention that explains
why “correlation is not causation”.

Surviving old age Surviving old age
Movin :
. 8 Dying of Dying of
yes
old age old age

Florida



Notation: the “do” Operator

* We must express how “Dying of old age” varies
with “Moving to Florida” in both cases.

* Traditionally, conditional probabilities can be
used for that. But notice that, in our example,

P(Dying of old age = True | Moving to Florida = True) #
P(Dying of old age = True | Moving to Florida = False)

is true in the observational case (no
intervention), but false in the interventional case.



Notation: the “do” Operator

* |n Pearl’s calculus, this is distinguished by
using the “do” operator to indicate an
intervention as opposed to an observation.

P(Dying of old age = True | Moving to Florida = True) #
P(Dying of old age = True | Moving to Florida = False)

P(Dying of old age = True | do(Moving to Florida = True)) =
P(Dying of old age = True | do(Moving to Florida = False))



Averages Vs. Individuals

* This type of notation can be used to express
whether a drug is effective or not, averaging

over a population, using a randomized
controlled trial:

P(Healthy = True | do(Treatment = Drug)) ?=
P(Healthy = True | do(Treatment = Placebo))

* |t does not make any claims, however, on
whether there is a balance of positive/
negative cases that cancel out.



Notation: Counterfactual Indices

 Meant to capture individual-level variability.

* For V;avariable in the system, and V; a
variable being intervened at value v, we use
V{v) as the counterfactual value of V, had V,

being set to v.

e Context will tell us which variable the value
“v' refers to.



Example

* Notice: it is common to represent V(v) as just
V. if V,is not a (direct or indirect) cause of V.

Urain(r) Ubarometer(r) Urain Ubarometer

| |

r —_ > Barometer(r) r —_— Barometer(r)



|”

“Other Things Being Equa

e Thatis,

— A counterfactual value replaces the cause of
Interest

— The counterfactual value propagates
“downstream” the causal graph via the structural
equations

— Everything else remains the same (“other things
being equal”), i.e., the non-descendants of the
manipulated variable.



Multiple Worlds

* A counterfactual is just a different “version” of
the same individual. All “versions” co-exist in
one big joint distribution.

URain UBarometer

Rain —_—> Barometer
r —_— Barometer(r)
r’ —_— Barometer(r’) '




Workflow

* Regardless of the machine learning algorithm to be
used, work with a domain expert to estimate a causal
model of your data.

— It’s a model of the world, not of your software.
* Choose any machine learning algorithm of interest,

any black-box that takes as inputs observed and
unobserved variables in your domain.

— Select a set of variables based on which sets respect
counterfactual fairness.

— If necessary, infer unobserved variables from the observed
ones.



Back to Counterfactual Fairness

 The law of counterfactual propagation means
that, if we want to ensure

PY(@)=y|A=a,X=2)=PY(d)=y|A=a, X =2)

it is sufficient (and necessary, in general) to
include only the non-descendants of A in the
definition of the predictor.



Examples

* A, Xcannot be used. « A, Employed cannot be
U can. used. Prejudiced and
Qualifications can.
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(@—’6/) If it is judged that

Prejudiced cannot be used,
it should be labelled as a
protected attributed.



How to Extract Unobserved Variables?

* Use the “factual” distribution to get a distribution
over the unobserved variables by standard
probabilistic conditioning.

P(Unobserved | Observed)

* Monte Carlo data augmentation approach:
replace each data point in your training sample
by a set of training points with the unobserved
variables being filled by a Monte Carlo sample.



Workflow

* Regardless of the machine learning algorithm to be
used, work with a domain expert to estimate a causal
model of your data.

— It’s a model of the world, not of your software.
e Choose any machine learning algorithm of interest,

'any black-box that takes as inputs observed and
unobserved variables in your domain.

— Select a set of variables based on which sets respect
counterfactual fairness.

— If necessary, infer unobserved variables from the observed
ones.



Algorithm

1: procedure FAIRLEARNING(D, M) > Learned parameters 0

2: For each data point 7 € D, sample . MCMC samples Ul(i) U ~ Pm(U | 29 a®).

3 Let D’ be the augmented dataset where each point (a(?), 2, y( )) in D is replaced W1th the
corresponding m points {(a'?, z(?) 4 4 (i))}

1 0 argming Z e D ,(J( (U(Z »4,31))
5: end procedure



Interpretation

e Extract causes of Y which are not mediators
between A and Y.

* Find the “best approximation” to Y within the
space of functions that exclude such mediators.

 Evenif Yis “unfair” (A is a cause of it), by
construction the predictor will be
counterfactually fair.



Challenges

* Counterfactual fairness clarifies that algorithmic
fairness in general is not explicitly modeling how
the word becomes fairer with fair predictions.

— Even if our decision of giving a loan is fair, it doesn’t
mean that in aggregate the probability of a person of

a particular demographic group won’t have difficulties
in repaying it (A still causes Y).

* The delayed impact of fair predictions is also a

research topic
— see Liu et al., https://arxiv.org/pdf/1803.04383.pdf




Workflow

* Regardless of the machine learning algorithm to be
'used, work with a domain expert to estimate a causal
model of your data.

— It’s a model of the world, not of your software.
* Choose any machine learning algorithm of interest,

any black-box that takes as inputs observed and
unobserved variables in your domain.

— Select a set of variables based on which sets respect
counterfactual fairness.

— If necessary, infer unobserved variables from the observed
ones.



Some Words of Caution

e Structural equations use unobserved variables.

e |tis common that some of these variables are
“default” choices based on some generic
modeling assumption such as additive errors.

Output = Signal + Noise

 Nature and society couldn’t care less whether
your mathematically convenient way of
separating signal and “noise” is elegant or not.



Some Words of Caution

* Thatis, there are infinitely many structural
equations V; = f(V,, U;) compatible with
P(V; | V) and P(V; | do(V))).

* Signal vs. noise must be determined by real-
world assumptions (“simplicity” assumptions,
of the Ockham’s razor type, can be sometimes
adequate as long as caveats are advertised).



Some Words of Caution

* By now, there are several good papers on how
to tackle fairness by generating unobserved
variables which are independent of A, using

assorted methods.

“Then off you go to plug-in U on
A a machine learning algorithm!”



However

 There are papers not causally motivated, which | find of
difficult interpretation.

— Remember: there are infinitely many ways of extracting U.

 There are papers causally motivated, but which commit
themselves to a domain-free family of structural equations.
OK enough, but why would you do that?

— Counterfactual fairness emphasizes that the causal modeling
step is separate from the prediction learning process.

* Finally, do beware of any paper that claims to do
assumption-free extraction of “causal latent factors”. Those
are selling you snake oil!



Interpretation of Counterfactuals

* But what does it mean to say “had my race been
different”??

— First, make sure to understand the difference
between “A” and “Perception of A”: these can lead to

conceptually different interpretations, even if the
model stays the same.

— Without going in details, if those counterfactuals
make you feel uneasy, just interpret them as
comparing two different people who happen to match
on the “other things being equal” factors.

* This is also related to fairness through awareness (Dwork et
al., 2011, https://arxiv.org/abs/1104.3913)



Non-Counterfactual Causal Models

* Contrary to folk knowledge, causality does not
require counterfactuals: the “do” operator is an
way of comparing treatments without comparing
individuals.

 However, if features X are affected by A, then in
general there is no individual where

PY=y | X=x%x,do(A=3a))=P(Y=y | X=X, do(A=23’))

* |f features X are not affected by A, then we can
show we do not need to explicitly model
structural equations anyway!



The Upside

* Because structural causal models rely on unobserved
variables, at least they can be partially falsified by
eventually measuring some of those variables.

e Just keep in mind:

— while it is preposterous to say you have “the” causal
model of a social process, you should (must?) be able to
explain your assumptions to a regulator or a customer.

— Having passed testable implications, the remaining
components of a counterfactual model should be
understood as conjectures formulated according to the
best of our knowledge. Such models should always be
deemed provisional and prone to modifications.



Illustration

e The Law School Admission Council conducted

a survey across 163 law schools in the United
States

— It contains information on 21,790 law students
such as their entrance exam scores (LSAT), their
grade-point average (GPA) collected prior to law
school, and their first year average grade (FYA).

e Task: predict if an applicant will have a high
FYA

— Example of decision problem: make an offer



Setup

* | will present some simple causal models for
this domain, which by no means | intend to
sell as well-thought models. Their purpose is
for illustration.

* We will fit real data to a model, then generate
synthetic counterfactuals out of it. The point is
to quantify to what extent a causally-oblivious
method violates counterfactual fairness.



Two Models

@)

“Fair K” “Fair Add”



Predictive Error (Real Data)

Comparison against “Full” (linear model with
all variables) and “Unaware” (linear model
without race and gender, but the other two
predictors)

— Evaluation by root mean squared error

Full Unaware Fair X' Fair Add

RMSE 0.873 0.894 0.929 0.918




Full

Unaware

Fairness Violations
(Simulated Counterfactuals)

black «» white asian < white mexican <» white feomale ¢ male

FYA FYA FYA FYA

nnnnn




Extension: Using Multiple Models

 We just saw two different counterfactual
models that give different predictions despite
being undistinguishable given the same data.

* This is OK assuming little difference between
models, but we may have competing theories
with some sizeable difference. We would like

to be “approximately counterfactually fair” to
all of them.



(g, 6)- Counterfactual Fairness

* The following constraint provides a relaxation of
counterfactual fairness:

P(Y(a)=Y(@d)| <e|A=a,X=a)>1-96

* Theidea is to simultaneously satisfy such
constraints according to different counterfactual
models.

— It is not hard to show that this problem in general has

no solution if e = 0, hence the need for an
approximate version.



Law School Revisited

constant predictor

law school
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A Different Direction: Interventions

e So far, we have solely discussed the creation of
predictors.

* |deally, we would like to destroy the pathways
between A and Y, the outcome of interest.

* Thisisin general not possible. But let’s assume
we have an intervention with the ability of
changing the contribution of A to Y. How is
related to counterfactual fairness?



Imperfect Interventions and
Interference

 We will assume two generalizations of the
concept of intervention used so far.

* An intervention is represented generically as a
set of (action) variables, which here | will
denote as Z.

— We can define Z=0 as the “no action” choice!

— Z # 0 just means that one or more structural
equations will change, not necessarily to a
constant (“imperfect”, or “soft” intervention).



deally

* Having available some “Z = z” which completely
overrides the structural equation for Y to not
depend on anything that starts on A.



In Reality

* No such an intervention is typically available.

* And this is not a prediction problem anymore.
What happens to Y?

* Setup:
— Assume Y is encoded so that high values are good.

— Model allows for interference: that is, treatment Z;
given to person i might affect person .

— How is this related to counterfactual fairness?



Optimization Problem and Constraints

Main family of constraints:

E[Y;(a;,z) | A; = a;, X; = ;] —ElY;(a',2) | Ay = a;, X; = 23] < T

(as opposed to

E[Y:i(aﬂz) | Az — aiaX’i — aj%] o ED/?Z(GJ/?Z) | Az — a'iaX’L' — 377,” < T)

1=1
S.t., ZZZ SB
1=1
Giw <7 Va' € A,iel,...,n




Intuitive Toy Example

Protected attribute A is such that Ain {b, w}, X
is some gquantitative measure of professional
competence, and Y is a measure of wealthin 5

years’ time.

Z. =1 means individual i gets a subsidy to
move to a neighborhood with better transport

links.



Intuitive Toy Example

e Suppose structural equation is
Y; = X, +100Z; + 50Z; x I(A; = w) + U,

* So if there are two individuals, one of type w and
one of type b,and Z, +Z, = 1.

* Without the fairness constraint, type w gets the
subsidy even if type b has up to 50 more units of
professional ability!



Considerations

* There might be no feasible solution if tis small
enough.

* |t might be the case that the “counterfactual gap”

in each constraint remains constant regardless of
Z.

* These are features of the intervention, not of the
fairness framework. Again, a good intervention is

a matter of real world design, not of algorithm
design!



lllustration
(Partially Synthetic Data)
NYC Public Schools:

intervention Zis to provide
calculus classes in schools.

Attribute A is whether
school has a white
majority.

Outcome Y'is proportion
of students taking the
SAT/ACT.

Geographical interference

is assumed.



Results
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Conclusion

| propose that causal modeling should be a key
component of fairness considerations.

Fairness has multiple facets. Here we considered
prediction and policy-making under interference.

Much more is relevant: selection bias, dynamic
prediction/treatments etc.

Good software design could help building
massive experiments in the internet, for instance.
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